Department of Electrical Engineering University of Engineering \& Technology

Univ. Reg. No.:
MDELE

Circuits Analysis - II (EE-201) - Final Term Examination

 Spring (2017)
Time Allowed: 2hrs

Max Marks: 50

DIRECTIONS:

1. Don't exceed your answer from 4 lines for a theory question having 2 or less marks.
2. Don't write questions. Only write Question number and part number, e.g., $Q-1(i v)$.
3. No sharing of calculators, rulers or any helping material is allowed during exam.

Q: No. 1: Answer the following questions briefly.
($2 \times 5=10$)
i) We use $\mathbf{t}=\mathbf{0}$ for finding Laplace Transform of a signal and $\boldsymbol{\omega}=-\infty$ for finding Inverse Laplace. Why we consider the negative frequency quadrants for doing so?
ii) What conditions do we follow while solving differential equations for finding residue of a current bearing element and a voltage storing element? Explain it by involving Laplace of integral and differential functions.
iii) Amongst transient or steady state response, which response is not considered for significantly higher values of time and why?
iv) A sine-wave of angular frequency $\boldsymbol{\omega}=\mathbf{1 - r a d} / \mathbf{s e c}$, having no phase angle, is applied to a real world system and it is continuously decaying with an exponential value of $2 e^{-a t}$. Find the composite input signal and draw it on a graph.
v) Find the Laplace transform of the input signal obtained in Q. No. 1 - part (iv).

Q: No. 2: $\quad A$ continuous time voltage signal is given by $\mathbf{x}(\mathbf{t})=\boldsymbol{t e}^{-2 \mathrm{t}}$.

Fig. 1
i) Find $\mathbf{X}(\mathbf{s})$.
ii) $\quad \mathbf{x}(\mathbf{t})$ is applied to the system given in Fig. 1; Write down the expression of current for $\mathrm{t}>0$ for the given system.
iii) What will be the value of transient and steady state current? Explain it referring to initial and final value theorem.

Department of Electrical Engineering University of Engineering \& Technology

Univ. Reg. No.: MDELE

Q: No. 3 Find voltage $\left(\mathrm{V}_{\mathrm{AB}}\right)$ for the circuit given in Fig. 2;

Fig. 2

Q: No. 4: The impedance parameter matric $\mathbf{Z}=[10+\mathbf{j} 2, j 2 ; j 2,5+j 2]$ defines a two port network.
i) Draw the equivalent T circuit.
ii) If the circuit connects a source of $\mathbf{2 0} \angle \mathbf{3 0 ^ { \circ }} \mathrm{V}$ to a resistance of $\mathbf{1 0 - \Omega}$, find the voltage across the resistor.

Q: No. 5:

i) Write down the DC, sine and cosine terms for trigonometric and exponential Fourier series.
ii) A specific saw-tooth wave possesses time period of 1-sec, having its peak value of 2-volts at 1 -sec. Find its Fourier coefficients $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{1}$ and b_{2}.
iii) Write 2 uses of Fourier series in everyday life or in signal processing.

