

Department of Electrical Engineering University of Engineering & Technology Peshawar, Mardan Campus

<u>Circuits Analysis - II (EE-201) – Final Term Examination</u> <u>Summer (2017)</u>

Time Allowed: 2hrs

Max Marks: 50

DIRECTIONS:

- 1. Don't write questions. Only write <u>Question number and part number</u>, e.g., Q-1(iv).
- 2. No sharing of calculators, rulers or any helping material is allowed during exam.

<u>Q: No. 1:</u>	Find the Laplace transforms of the following.	(2x5=10)
i) ii) iii) iv) v)	e^{6t} 4sin(2t) t + 4t ² 5 - cos(3t) e^{-5}	
<u>Q: No. 2:</u>	Find the inverse Laplace of the following.	(3x5=15)
i) ii)	$\frac{\frac{1}{2s}}{\frac{2}{2}}$	
iii)	$\frac{s+5}{(s+2)^2+6^2}$	
iv)	$\frac{12}{(s+4)^2+12^2}$	
V)	$\frac{e}{2s} + \frac{4.3.2.1}{s^5}$	
<u>Q: No. 3:</u> i)	Find the Fourier series of the wave given by;	(6+4)

$$y(t) = \begin{cases} 4t^2 & 0 \le t < 1/2 \\ 1 & 1/2 \le t < 1 \end{cases}$$
 (assuming that T = 1)

ii) Draw the signal given by <u>**Q**</u>: **No. 3** (*i*) on time scale as well as frequency scale.

Department of Electrical Engineering University of Engineering & Technology Peshawar, Mardan Campus

i) Find X(s).

(2)

- ii) **x(t)** is applied to the system given in **Fig. 1**; Write down the expression of current for **t>0** for the given system. (8)
- <u>Q: No. 5</u> Find Power (S) delivered by each voltage source for the circuit given in Fig. 2;

(Hint: S=IV)

THE END