<u>Q: No. 1:</u> Encircle the best possible answer.

- i) We use _____ types of combination while dealing with star and delta w.r.t per phase impedance.
 - a) 1
 - b) 2
 - c) 3
 - d) Can't be determined
- ii) Line voltage is greater than phase voltage in _____.
 - a) Star combination
 - b) Wye combination
 - c) Delta combination
 - d) Both (a) and (b)
- iii) Semi-Logarithmic graph is used for _____.
 - a) Converting non-linear function to linear
 - b) Converting addition to multiplication
 - c) Representing decimal number as a whole number
 - d) All of the above
 - e) Only (b) and (c)
- iv) Quality factor is the reciprocal of
 - a) Diversity Factor
 - b) Power Factor
 - c) Line impedance
 - d) None of the above
- v) Transfer function gives us an insight of the system w.r.t _____.
 - a) Input Signal
 - b) Only Frequency of Input signal
 - c) Structural components of the system
 - d) Only (a) and (c)
 - e) Only (b) and (c)

<u>Q: No. 2:</u>

- i) What is the main difference between positive sequence and negative sequence current in 3 phase power system?
- ii) What are the benefits of 3 phase delta over 3 phase star transmission lines?
- iii) One phase of wye connected load is short-circuited with the help of a wire having **0** Ω resistance. How can we suppose that it resembles to an open delta configuration?

<u>Q: No. 3:</u> A star configured load is connected through a 3 phase transmission line with a **120V** rms delta connected positive sequenced source configuration having $\theta_{ab} = 0^{\circ}$? Considering

- vi) In Parallel RLC circuit. The offered impedance of the circuit is _____ at the resonance frequency.
 - a) Maximum
 - b) Minimum
 - c) Same as at non-resonating condition
- vii) A signal is centered at **700Hz** with a deviation of 100Hz. What should be the tuning frequency fc (rad/s) of Series RLC circuit to pass the signal?
 - a) 2π ·700rad/s
 - b) 2π·600rad/s
 - c) 2π·800rad/s
 - d) 2π·200rad/s
 - e) 600rad/s
- viii) System pole(s) determines the range of frequency where the input signal will be_____.
 - a) Enhanced
 - b) Degraded
 - c) Doesn't affect
- ix) Negative sign with logarithm quantity indicates _____
 - a) Attenuation
 - b) Gain
 - c) Noise
 - d) None of the above
- x) The phase angle of a system having pole at $j\omega=5$ and a zero at $j\omega=15$ will reside between
 - a) $90^\circ\,and\,\,0^\circ$
 - b) -90° and 0°
 - c) 90° and -90°
 - d) Always at 0°

(6)

load's per phase impedance of $Z_L= 2+j3 \Omega$ and line impedance of 0Ω , determine the phase voltages, currents and per phase total power (S) for the connected load. (4)

<u>**Q**</u>: No. 4:</u> For the circuit in <u>Fig. 1</u>, find the voltage gain ($A_v(s)$) and current gain ($A_i(s)$) in terms of complex frequency $s=j\omega$. (10)

Hint: Voltage and current dividend rules can find the ratios

<u>Q: No. 5:</u>

(20)

The half power bandwidth of a series RLC circuit is 2kHz. If the circuit is to be designed from an inductive component of 0.1mH and a capacitive component of 5µF:

- i) What will be the central tuning frequency (fc) of the circuit?
- ii) What will be the lower bound (f_{L}) and upper bound (f_{H}) of the Bandwidth?
- iii) Determine the quality factor of the filter for $R=20\Omega$, 30Ω and 100Ω .
- iv) Is the designed circuit useful in filtering out a voltage signal of **6.5kHz** from a noise band of **20Hz-20kHz**?
- v) Draw the frequency vs gain plot for the designed filter.